skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hahm, Min Jeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The nonlinear strain response of soft material–based snap-through systems enables amplified and accelerated force output. However, efficiency of snap-through energy release is challenging to improve because of the inherent trade-off between initial curvature and stiffness. Here, spatial programming of stiffness variation in the azobenzene-functionalized liquid-crystalline polymer (Azo-LCP) addresses this limitation and achieves efficient photomechanical jumping. Introduction of stiffness mismatch induced localized curvature, which preserved the initial curvature and simultaneously enhanced photomechanical strain responsivity. By programming for symmetry of stiffness variation, we achieved directional or vertical jumping via strategic placement of the rigid region, with corresponding stress accumulation behaviors corroborated by finite element simulations. Integration of patterned stiffness variation with geometric asymmetry enabled both vertical and horizontal jumping within a single structure, without compromising performance. This dual-mode jumper also demonstrated sequential and consecutive jumps under continuous light exposure. 
    more » « less
    Free, publicly-accessible full text available August 29, 2026